80p+700=75p^2+10p+200

Simple and best practice solution for 80p+700=75p^2+10p+200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80p+700=75p^2+10p+200 equation:



80p+700=75p^2+10p+200
We move all terms to the left:
80p+700-(75p^2+10p+200)=0
We get rid of parentheses
-75p^2+80p-10p-200+700=0
We add all the numbers together, and all the variables
-75p^2+70p+500=0
a = -75; b = 70; c = +500;
Δ = b2-4ac
Δ = 702-4·(-75)·500
Δ = 154900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{154900}=\sqrt{100*1549}=\sqrt{100}*\sqrt{1549}=10\sqrt{1549}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-10\sqrt{1549}}{2*-75}=\frac{-70-10\sqrt{1549}}{-150} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+10\sqrt{1549}}{2*-75}=\frac{-70+10\sqrt{1549}}{-150} $

See similar equations:

| 6x-x-4x+3=14 | | 12z-8z+2z-4z=8 | | 6u-3u-2u=20 | | -53.6=-6.7n | | -8x+5(x-8)=-19 | | 9c-3c-3c-c=12 | | 7x-2x=+29-4 | | -5w=85 | | 4q+q+q-2q-3=1 | | 10x-3-24=4 | | 3u-3u+4u+2=10 | | -4/5x-7/20x+1/4=-72 | | 2(m-9)-13=3 | | -4y+9=10+5y | | 20t+2t-20t=14 | | 4m+2m-5m+2=4 | | (2x-8)/(6x-24)=1/3 | | 7u/2=42 | | h+4h-3=17 | | w−-27=72 | | 7w-7w+5w+3=18 | | 4.1+c=1.3 | | 5q+3q-6q+4q=6 | | 16n+2n-17n=1 | | -38=7x | | -4x=-5x+9 | | 8x−6=14 | | 16y-16y+2y+2y=16 | | M2=95+7x | | -1+3(-3x-2)=-34 | | 3+(x-10)=18 | | 5y-9=42 |

Equations solver categories